Zero-field nuclear magnetic resonance of chemically exchanging systems

Barskiy, Danila A., Michael C. D. Tayler, Irene Marco-Rius, John Kurhanewicz, Daniel B. Vigneron, Sevil Cikrikci, Ayca Aydogdu, et al. “Zero-Field Nuclear Magnetic Resonance of Chemically Exchanging Systems.” Nature Communications 10, no. 1 (December 2019): 3002.

https://doi.org/10.1038/s41467-019-10787-9.

Zero- to ultralow-field (ZULF) nuclear magnetic resonance (NMR) is an emerging tool for precision chemical analysis. In this work, we study dynamic processes and investigate the influence of chemical exchange on ZULF NMR J-spectra. We develop a computational approach that allows quantitative calculation of J-spectra in the presence of chemical exchange and apply it to study aqueous solutions of [15N]ammonium (15NHfl4 ) as a model system. We show that pH-dependent chemical exchange substantially affects the J-spectra and, in some cases, can lead to degradation and complete disappearance of the spectral features. To demonstrate potential applications of ZULF NMR for chemistry and biomedicine, we show a ZULF NMR spectrum of [2-13C]pyruvic acid hyperpolarized via dissolution dynamic nuclear polarization (dDNP). We foresee applications of affordable and scalable ZULF NMR coupled with hyperpolarization to study chemical exchange phenomena in vivo and in situations where high-field NMR detection is not possible to implement.

Might this article interest your colleagues? Share it!

Have a question?

If you have questions about our instrumentation or how we can help you, please contact us.