Pulse-Shaped Dynamic Nuclear Polarization under Magic-Angle Spinning #DNPNMR

Equbal, Asif, Kan Tagami, and Songi Han. “Pulse-Shaped Dynamic Nuclear Polarization under Magic-Angle Spinning.” The Journal of Physical Chemistry Letters 10, no. 24 (December 19, 2019): 7781–88.


Dynamic nuclear polarization (DNP) under magic-angle spinning (MAS) is transforming the scope of solid-state NMR by enormous signal amplification through transfer of polarization from electron spins to nuclear spins. Contemporary MAS-DNP exclusively relies on monochromatic continuous-wave (CW) irradiation of the electron spin resonance. This limits control on electron spin dynamics, which renders the DNP process inefficient, especially at higher magnetic fields and non cryogenic temperatures. Pulse-shaped microwave irradiation of the electron spins is predicted to overcome these challenges but hitherto has never been implemented under MAS. Here, we debut pulse-shaped microwave irradiation using arbitrary-waveform generation (AWG) which allows controlled recruitment of a greater number of electron spins per unit time, favorable for MAS-DNP. Experiments and quantum mechanical simulations demonstrate that pulse-shaped DNP is superior to CW-DNP for mixed radical system, especially when the electron spin resonance is heterogeneously broadened and/or when its spin−lattice relaxation is fast compared to the MAS rotor period, opening new prospects for MAS-DNP.

Might this article interest your colleagues? Share it!

Have a question?

If you have questions about our instrumentation or how we can help you, please contact us.