

OpenPCBLGR **GitHub Repository**

Workshop **Resonator Design: The OpenPCBLGR**

Thorsten Maly BRIDGE Bridge12 Magnetic Resonance RMC, Denver, 07/23 – 07/27/2023

What to expect from this Workshop

- This is not an electrical engineering class
 - Light on theory
 - Heavy on "how to …"
 - Applied electrical engineering
- This is not a substitution to crack open a book
 - E.g. Poole "Electron Spin Resonance" (1983 edition ...)

It should serve as an inspiration

Abebooks.com: ~ 16 \$

Simple Reflection Bridge

- Basic setup for EPR detection
- Source protection through circulator
- Reflected power is directed to detector
- No phase information (superposition of absorption and dispersion signal)

Reflection Bridge with Reference Arm

- Phase sensitive EPR signal detection (reference arm)
- Increased sensitivity
- Operates at fundamental frequency

Superheterodyne Bridge

- Highly sophisticated setup for high-field EPR spectroscopy
- Maximum sensitivity (amplification at IF)
- Create/Shape pulses at LO frequency

EPR Resonators

What is a Resonator?

- Can be a simple rectangular box or pipe
- In EPR spectroscopy the TE₁₀₂ cavity is THE classic EPR resonator

TE₁₀ Waveguide Mode

• Why a Resonator?

- EPR signals are small
- Amplify the signal (increase sensitivity)

Rectangular cavity operates in a ${\sf TE}_{\sf mnl}$

$$f_{mnl} = \frac{c}{2\sqrt{\mu_r\epsilon_r}} \sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2 + \left(\frac{l}{d}\right)^2}$$

Resonance Frequencies in a Rectangular TE_{mnl} Cavity

Waveguide	а	b	l (mode)	Frequency	d (calc.)
WR-90	0.900 in. (22.86 mm)	0.400 in. (10.16 mm)	2	9.50 GHz	1.717 in. (43.61 mm)
WR-90	0.900 in. (22.86 mm)	0.400 in. (10.16 mm)	3	9.50 GHz	2.575 in. (65.4 mm)
WR-28	0.280 in. (7.11 mm)	0.140 in (3.56 mm)	2	34 GHz	0.443 in. 11.24 mm
WR-4.3	0.043 in. (1.09 mm)	0.022 in. (0.56 mm)	2	260 GHz	0.054 in. 1.36 mm

$$f_{mnl} = \frac{c}{2\sqrt{\mu_r\epsilon_r}} \sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2 + \left(\frac{l}{d}\right)^2}$$

Microwave Coupling to the Resonator

Waveguide Coupling

- Electric fields in waveguide are coupled to resonator using an iris
- The iris changes the matching between the waveguide and resonator

Bridge12 Magnetic Resonance LLC

Poole, Electron Spin Resonance

(SMA) Coupling Antenna

- Can be loop or stub
- Couple to (residual) H or E fields of the resonator
- Moving the position changes matching

Characterizing the EPR Resonator

- 3 Coupling regimes
 - Undercoupled ($\beta < 1, \Gamma > 0$)
 - Critically Coupled ($\beta = 1, \Gamma = 0$)
 - Overvoupled ($\beta > 1, \Gamma < 0$)
- β Coupling Coefficient, Γ Reflection Coefficient

Resonator Quality factor: $Q = \frac{\nu}{\Delta \nu}$

Determines the Resonator Bandwidth

Characterizing the EPR Resonator

Source: https://en.wikipedia.org/wiki/Smith_chart

- 3 Coupling regimes
 - Undercoupled ($\beta < 1, \Gamma > 0$)
 - Critically Coupled ($\beta = 1, \Gamma = 0$)
 - Overvoupled ($\beta > 1, \Gamma < 0$)
- β Coupling Coefficient, Γ Reflection Coefficient

Resonator Quality factor: $Q = \frac{\nu}{\Delta \nu}$

Determines the Resonator Bandwidth

- S₁₁ plot tells you whether a probe is coupled
- Reflection coefficient as measured by VNA is a complex number
 - Negative: Capacitive Reactance
 - Positive: Inductive Reactance
- Smith Chart tells you how the probe is coupled

Commercial EPR Resonators

Bruker Flexline

 High-quality, highfidelity resonators

Best performance

 Expensive research instruments

Open-Source Hardware

Arduino

- Low-cost (~ 30 \$) microcontroller board
- Introduced in 2005. By 2021 reportedly sold 10M boards
- Philosophy: If you want to start learning about electronics, don't start with algebra, learning should start at day one
- Introduced shields to expand functionality
- Easy to learn programming and electronics
 - It's still C++ but the IDE makes it easy

Open-Source Hardware Designs

- All relevant information to recreate hardware is publicly available
 - Assembly instructions, bill of materials
- Emphasis on low-cost
- Take advantage of digital manufacturing (3D printing)
- Build a strong community
- Publish under OS license

Open-Source Hardware @ Bridge12

Build Instrumentation

Instrumentation for Magnetic Resonance

Build low-cost resonators for x-band EPR spectroscopy or make NMR coils using different techniques.

www.bridge12.com/learn

Open-Source PCB Loop-Gap Resonator (LGR)

Objectives

- Inexpensive hardware/materials
 - Keep costs < 100 \$</p>
- Easy to assemble, modify, and adapt
- Must be educational and fun
 - Acquire new skills

Strategy

- Use commercial off-the-shelve (COTS) components
- Avoid expensive machining
 - Utilize 3D printing
 - Use commercial PCB fab house

OpenPCBLGR GitHub Repository

Loop-Gap Resonators for EPR Spectroscopy are Not New

JOURNAL OF MAGNETIC RESONANCE 47, 515-521 (1982)

COMMUNICATIONS

The Loop-Gap Resonator: A New Microwave Lumped Circuit ESR Sample Structure

W. FRONCISZ* AND JAMES S. HYDE

National Biomedical ESR Center, Department of Radiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226

Received February 23, 1982

- LGR can be described as a lumped-element circuit
 - Inductivity given by the loops
 - Capacitance given by the gaps
- LGR Pros
 - Large filling factor
 - Large conversion factor
 - Good field homogeneity
 - Large bandwidth (low Q), good for pulsed experiments
- LGR Cons
 - Small gaps are challenging to machine using traditional machining
 - Field modulation coils for cw experiments is challenging
 - Solid resonator
 - Gold plated Macor

Froncisz, W., and James S. Hyde. J. Magn. Reson. (1982).

Rinard, George A., and Gareth R. Eaton. *Biomedical EPR, Part B: Methodology, Instrumentation, and Dynamics.* (2005). Sidabras, Jason W., et al. *J. Magn. Reson.* (2017).

Field Modulation, Microwaves, and Skin Depth

Copper Skin Depth vs Frequency

- Typical Cu amount for PCBs is 1 oz/ft²
 - \approx 32 µm copper thickness
- Field Modulation
 - At 100 kHz, δ ~ 200 μm
 - Field modulation can penetrate

Resonator

- At 9.5 GHz, δ ~ 0.65 μm
- Microwave fields are confined

LGR Design Parameters

Parameter	Value	
Number of loops and gaps	3L2G	
Central loop diameter (sample access)	5.2 mm	
Return loop diameter	6.0 mm	
Gap length and width	Form Simulations	
Resonator Height	5 – 10 mm	
Resonator Frequency	9.5 GHz	

LGR Resonator Dimensions

Design Parameters

- 9.5 GHz
- 5 mm Sample Access
- Height ~10 mm

PCB Manufacturer Capabilities

- Minimum Plated Slot Width: 0.65 mm
- Max Plated Hole Diameter: 6.3 mm

Determined from Simulations

Gap Length: 1.6 mm

HFSS Simulations

Eigenmode Simulations

Resonator Model (5 PCBs, 8 mm)

0 15 30 (mm).

Bridge12 Magnetic Resonance LLC

H-Field

E-Field

Microwave Coupling via PCB Based Loop Antenna

First Generation X-Band PCB LGR

3L2G Resonator

PCB Frequency Statistics

First Generation X-Band PCB LGR

3L2G Resonator

Mechanical Design and Assembly of PCB Resonator

Microwave Performance

VNA Measurements and Conversion Factor Simulations

HFSS Simulation: B₁ along Sample Axis

- Critically Coupled, Q = 600-1000
- Overcoupled, Q < 100 (~100 MHz BW)

Adjusting Resonator Height

EPR Setup and Measurements

Bridge12 Magnetic Resonance LLC

DNP Literature Blog: Twitter: Email:

blog.bridge12.com @thmaly tmaly@bridge12.com

THANK YOU

Selected References

- EPR Instrumentation
 - Reijerse et al., "Electron Paramagnetic Resonance Instrumentation." In *EMagRes*, edited by Robin K. Harris and Roderick L. Wasylishen, 187–206. Chichester, UK: John Wiley & Sons, Ltd, 2017. <u>https://doi.org/10.1002/9780470034590.emrstm1511</u>.
- Smith Chart
 - https://www.analog.com/en/technical-articles/impedance-matching-and-smith-chart-impedance-maxim-integrated.html
- Loop Gap Resonators
 - Froncisz et al., "A New Microwave Lumped Circuit ESR Sample Structure." Journal of Magnetic Resonance (1969) 47 (May 1, 1982): 515–21. <u>http://dx.doi.org/10.1016/0022-2364(82)90221-9</u>.
 - Rinard et al. "Loop-Gap Resonators." In *Biomedical EPR, Part B: Methodology, Instrumentation, and Dynamics*, 19–52. Boston, MA: Springer US, 2005. <u>https://link.springer.com/chapter/10.1007/0-306-48533-8_2</u>.
 - Tschaggelar et al., "High-Bandwidth Q-Band EPR Resonators." Applied Magnetic Resonance 48 (December 1, 2017): 1273–1300. <u>https://doi.org/10.1007/s00723-017-0956-z</u>.
- Coupling to the Resonator
 - Mett et al. "Coupling of Waveguide and Resonator by Inductive and Capacitive Irises for EPR Spectroscopy." Applied Magnetic Resonance 35 (2008): 285–318. <u>https://doi.org/10.1007/s00723-008-0162-0</u>.