Category Archives: Nonuniform Sampling

Sensitivity of nonuniform sampling NMR

This is not an article directly related to DNP, however, non-uniform sampling is another great technique to enhance sensitivity in a NMR experiment. The concept can easily combined with DNP to yield even higher sensitivity enhancement factors.

Palmer, M.R., et al., Sensitivity of nonuniform sampling NMR. J Phys Chem B, 2015. 119(22): p. 6502-15.

http://www.ncbi.nlm.nih.gov/pubmed/25901905

Many information-rich multidimensional experiments in nuclear magnetic resonance spectroscopy can benefit from a signal-to-noise ratio (SNR) enhancement of up to about 2-fold if a decaying signal in an indirect dimension is sampled with nonconsecutive increments, termed nonuniform sampling (NUS). This work provides formal theoretical results and applications to resolve major questions about the scope of the NUS enhancement. First, we introduce the NUS Sensitivity Theorem in which any decreasing sampling density applied to any exponentially decaying signal always results in higher sensitivity (SNR per square root of measurement time) than uniform sampling (US). Several cases will illustrate this theorem and show that even conservative applications of NUS improve sensitivity by useful amounts. Next, we turn to a serious limitation of uniform sampling: the SNR by US decreases for extending evolution times, and thus total experimental times, beyond 1.26T2 (T2 = signal decay constant). Thus, SNR and resolution cannot be simultaneously improved by extending US beyond 1.26T2. We find that NUS can eliminate this constraint, and we introduce the matched NUS SNR Theorem: an exponential sampling density matched to the signal decay always improves the SNR with additional evolution time. Though proved for a specific case, broader classes of NUS densities also improve SNR with evolution time. Applications of these theoretical results are given for a soluble plant natural product and a solid tripeptide (u-(13)C,(15)N-MLF). These formal results clearly demonstrate the inadequacies of applying US to decaying signals in indirect nD-NMR dimensions, supporting a broader adoption of NUS.

Enhanced sensitivity by nonuniform sampling enables multidimensional MAS NMR spectroscopy of protein assemblies

This may look like a bit off-topic. However, in recent years nonuniform sampling and especially the methods to process the experimental data sets have become very stable. In principle uniform sampling can combined with DNP to achieve an even higher sensitivity.

Paramasivam, S., et al., Enhanced sensitivity by nonuniform sampling enables multidimensional MAS NMR spectroscopy of protein assemblies. J Phys Chem B, 2012. 116(25): p. 7416-27.

http://www.ncbi.nlm.nih.gov/pubmed/22667827

We report dramatic sensitivity enhancements in multidimensional MAS NMR spectra by the use of nonuniform sampling (NUS) and introduce maximum entropy interpolation (MINT) processing that assures the linearity between the time and frequency domains of the NUS acquired data sets. A systematic analysis of sensitivity and resolution in 2D and 3D NUS spectra reveals that with NUS, at least 1.5- to 2-fold sensitivity enhancement can be attained in each indirect dimension without compromising the spectral resolution. These enhancements are similar to or higher than those attained by the newest-generation commercial cryogenic probes. We explore the benefits of this NUS/MaxEnt approach in proteins and protein assemblies using 1-73-(U-(13)C,(15)N)/74-108-(U-(15)N) Escherichia coli thioredoxin reassembly. We demonstrate that in thioredoxin reassembly, NUS permits acquisition of high-quality 3D-NCACX spectra, which are inaccessible with conventional sampling due to prohibitively long experiment times. Of critical importance, issues that hinder NUS-based SNR enhancement in 3D-NMR of liquids are mitigated in the study of solid samples in which theoretical enhancements on the order of 3-4 fold are accessible by compounding the NUS-based SNR enhancement of each indirect dimension. NUS/MINT is anticipated to be widely applicable and advantageous for multidimensional heteronuclear MAS NMR spectroscopy of proteins, protein assemblies, and other biological systems.

Enhanced sensitivity by nonuniform sampling enables multidimensional MAS NMR spectroscopy of protein assemblies

This may look like a bit off-topic. However, in recent years nonuniform sampling and especially the methods to process the experimental data sets have become very stable. In principle uniform sampling can combined with DNP to achieve an even higher sensitivity.

Paramasivam, S., et al., Enhanced sensitivity by nonuniform sampling enables multidimensional MAS NMR spectroscopy of protein assemblies. J Phys Chem B, 2012. 116(25): p. 7416-27.

http://www.ncbi.nlm.nih.gov/pubmed/22667827

We report dramatic sensitivity enhancements in multidimensional MAS NMR spectra by the use of nonuniform sampling (NUS) and introduce maximum entropy interpolation (MINT) processing that assures the linearity between the time and frequency domains of the NUS acquired data sets. A systematic analysis of sensitivity and resolution in 2D and 3D NUS spectra reveals that with NUS, at least 1.5- to 2-fold sensitivity enhancement can be attained in each indirect dimension without compromising the spectral resolution. These enhancements are similar to or higher than those attained by the newest-generation commercial cryogenic probes. We explore the benefits of this NUS/MaxEnt approach in proteins and protein assemblies using 1-73-(U-(13)C,(15)N)/74-108-(U-(15)N) Escherichia coli thioredoxin reassembly. We demonstrate that in thioredoxin reassembly, NUS permits acquisition of high-quality 3D-NCACX spectra, which are inaccessible with conventional sampling due to prohibitively long experiment times. Of critical importance, issues that hinder NUS-based SNR enhancement in 3D-NMR of liquids are mitigated in the study of solid samples in which theoretical enhancements on the order of 3-4 fold are accessible by compounding the NUS-based SNR enhancement of each indirect dimension. NUS/MINT is anticipated to be widely applicable and advantageous for multidimensional heteronuclear MAS NMR spectroscopy of proteins, protein assemblies, and other biological systems.

Have a question?

If you have questions about our instrumentation or how we can help you, please contact us.