High-resolution hyperpolarized in vivo metabolic 13C spectroscopy at low magnetic field (48.7mT) following murine tail-vein injection

Coffey, A.M., et al., High-resolution hyperpolarized in vivo metabolic 13C spectroscopy at low magnetic field (48.7mT) following murine tail-vein injection. J. Magn. Reson., 2017. 281(Supplement C): p. 246-252.

http://www.sciencedirect.com/science/article/pii/S1090780717301659

High-resolution 13C NMR spectroscopy of hyperpolarized succinate-1-13C-2,3-d2 is reported in vitro and in vivo using a clinical-scale, biplanar (80cm-gap) 48.7mT permanent magnet with a high homogeneity magnetic field. Non-localized 13C NMR spectra were recorded at 0.52MHz resonance frequency over the torso of a tumor-bearing mouse every 2s. Hyperpolarized 13C NMR signals with linewidths of ∼3Hz (corresponding to ∼6ppm) were recorded in vitro (2mL in a syringe) and in vivo (over a mouse torso). Comparison of the full width at half maximum (FWHM) for 13C NMR spectra acquired at 48.7mT and at 4.7T in a small-animal MRI scanner demonstrates a factor of ∼12 improvement for the 13C resonance linewidth attainable at 48.7mT compared to that at 4.7T in vitro. 13C hyperpolarized succinate-1-13C resonance linewidths in vivo are at least one order of magnitude narrower at 48.7mT compared to those observed in high-field (≥3T) studies employing HP contrast agents. The demonstrated high-resolution 13C in vivo spectroscopy could be useful for high-sensitivity spectroscopic studies involving monitoring HP agent uptake or detecting metabolism using HP contrast agents with sufficiently large 13C chemical shift differences.

Might this article interest your colleagues? Share it!

Have a question?

If you have questions about our instrumentation or how we can help you, please contact us.