Dynamic nuclear polarization enhanced neutron crystallography: Amplifying hydrogen in biological crystals #DNPNMR

Pierce, Joshua, Matthew J. Cuneo, Anna Jennings, Le Li, Flora Meilleur, Jinkui Zhao, and Dean A. A. Myles. “Chapter Eight – Dynamic Nuclear Polarization Enhanced Neutron Crystallography: Amplifying Hydrogen in Biological Crystals.” In Methods in Enzymology, edited by Peter C. E. Moody, 634:153–75. Neutron Crystallography in Structural Biology. Academic Press, 2020.


Dynamic nuclear polarization (DNP) can provide a powerful means to amplify neutron diffraction from biological crystals by 10–100-fold, while simultaneously enhancing the visibility of hydrogen by an order of magnitude. Polarizing the neutron beam and aligning the proton spins in a polarized sample modulates the coherent and incoherent neutron scattering cross-sections of hydrogen, in ideal cases amplifying the coherent scattering by almost an order of magnitude and suppressing the incoherent background to zero. This chapter describes current efforts to develop and apply DNP techniques for spin polarized neutron protein crystallography, highlighting concepts, experimental design, labeling strategies and recent results, as well as considering new strategies for data collection and analysis that these techniques could enable.

Might this article interest your colleagues? Share it!

Have a question?

If you have questions about our instrumentation or how we can help you, please contact us.