Category Archives: uv irradiation

Efficient Hyperpolarization of U- 13C-Glucose Using Narrow-Line UV-Generated Labile Free Radicals #DNPNMR

DNP requires a paramagnetic polarizing agent. This is great for DNP but not so great for the NMR experiment, since the paramagnetic species often causes line broadening due to increase nuclear relaxation. To decrease the unwanted relaxation enhancement some researchers suggested to remove (e.g. filter out) the paramagnetic species after the dissolution step.

The article describes an elegant method, using UV generated radicals for polarization at low temperatures, which recombine once the sample is heated up during the dissolution process, effectively removing the paramagnetic enhanced relaxation process.

Capozzi, Andrea, Saket Patel, Christine Pepke Gunnarsson, Irene Marco-Rius, Arnaud Comment, Magnus Karlsson, Mathilde H. Lerche, Olivier Ouari, and Jan Henrik Ardenkjaer-Larsen. “Efficient Hyperpolarization of U- 13C-Glucose Using Narrow-Line UV-Generated Labile Free Radicals.” Angewandte Chemie, December 20, 2018.

https://doi.org/10.1002/ange.201810522

Free radicals generated via irradiation with UV-light of a frozen solution containing a fraction of pyruvic acid (PA), have demonstrated their dissolution Dynamic Nuclear Polarization (dDNP) potential providing up to 30% [1-13C]PA liquid-state polarization. Moreover, their labile nature has proven to pave a way to nuclear polarization storage and transport. Herein, differently from the case of PA, we tackled the issue of providing dDNP UV-radical precursors, trimethylpyruvic acid (TriPA) and its methyl-deuterated form d9-TriPA, not involved in any metabolic pathway. The 13C dDNP performance was evaluated for hyperpolarization of [U-13C6,1,2,3,4,5,6,6-d7]-Dglucose. The generated UV-radical proved to be a versatile and highly efficient polarizing agent providing, after dissolution and transfer (10 s), a 13C liquid-state polarization up to 32%.

Photogenerated Radical in Phenylglyoxylic Acid for in Vivo Hyperpolarized 13C MR with Photosensitive Metabolic Substrates #DNPNMR

Marco-Rius, Irene, Tian Cheng, Adam P. Gaunt, Saket Patel, Felix Kreis, Andrea Capozzi, Alan J. Wright, Kevin M. Brindle, Olivier Ouari, and Arnaud Comment. “Photogenerated Radical in Phenylglyoxylic Acid for in Vivo Hyperpolarized 13 C MR with Photosensitive Metabolic Substrates.” Journal of the American Chemical Society 140, no. 43 (October 31, 2018): 14455–63.

https://doi.org/10.1021/jacs.8b09326.

Whether for 13C magnetic resonance studies in chemistry, biochemistry or biomedicine, hyperpolarization methods based on dynamic nuclear polarization (DNP) have become ubiquitous. DNP requires a source of unpaired electrons, which are commonly added to the sample to be hyperpolarized in the form of stable free radicals. Once polarized, the presence of these radicals is unwanted. These radicals can be replaced by nonpersistent radicals created by photo-irradiation of pyruvic acid (PA), which are annihilated upon dissolution or thermalization in the solid state. However, since PA is readily metabolized by most cells, its presence may be undesirable for some metabolic studies. In addition, some 13C substrates are photo-sensitive and, therefore, may degrade during photo-generation of PA radical, which requires ultraviolet (UV) light. We show here that photoirradiation of phenylglyoxylic acid (PhGA) using visible light produces a non-persistent radical that, in principle, can be used to hyperpolarize any molecule. We compare radical yields in samples containing PA and PhGA upon photo-irradiation with broadband and narrowband UV-visible light sources. To demonstrate the suitability of PhGA as a radical precursor for DNP, we polarized the gluconeogenic probe 13C-dihydroxyacetone, which is UV-sensitive, using a commercial 3.35 T DNP polarizer and then injected this into a mouse and followed its metabolism in vivo.

Persistent Radicals of Self-assembled Benzophenone bis-Urea Macrocycles: Characterization and Application as a Polarizing Agent for Solid-state DNP MAS Spectroscopy #DNPNMR #NMR

Most commonly nitroxide-based radicals are used in DNP. However, there are many other stable radicals. This one is a UV generated radical that is stable for weeks at room temperature. In addition it exhibits a fairly narrow linewidth. This radical, in combination with another narrow line radical (BDPA, trityl, etc.) could make a very efficient polarizing agent when mixed together or even covalently attached to each other.

DeHaven, B.A., et al., Persistent Radicals of Self-assembled Benzophenone bis-Urea Macrocycles: Characterization and Application as a Polarizing Agent for Solid-state DNP MAS Spectroscopy. Chemistry, 2017. 23(34): p. 8315-8319.

https://www.ncbi.nlm.nih.gov/pubmed/28423212

UV-irradiation of a self-assembled benzophenone bis-urea macrocycle generates mum amounts of radicals that persist for weeks under ambient conditions. High-field EPR and variable-temperature X-band EPR studies suggest a resonance stabilized radical pair through H-abstraction. These endogenous radicals were applied as a polarizing agent for magic angle spinning (MAS) dynamic nuclear polarization (DNP) NMR enhancement. The field-stepped DNP enhancement profile exhibits a sharp peak with a maximum enhancement of on/off =4 superimposed on a nearly constant DNP enhancement of on/off =2 over a broad field range. This maximum coincides with the high field EPR absorption spectrum, consistent with an Overhauser effect mechanism. DNP enhancement was observed for both the host and guests, suggesting that even low levels of endogenous radicals can facilitate the study of host-guest relationships in the solid-state.

Have a question?

If you have questions about our instrumentation or how we can help you, please contact us.