Aqueous, Heterogeneous para-Hydrogen-Induced 15N Polarization

Bales, L.B., et al., Aqueous, Heterogeneous para-Hydrogen-Induced 15N Polarization. The Journal of Physical Chemistry C, 2017. 121(28): p. 15304-15309.

The successful transfer of para-hydrogen-induced polarization to 15N spins using heterogeneous catalysts in aqueous solutions was demonstrated. Hydrogenation of a synthesized unsaturated 15N-labeled precursor (neurine) with parahydrogen (p-H2) over Rh/TiO2 heterogeneous catalysts yielded a hyperpolarized structural analogue of choline. As a result, 15N polarization enhancements of over 2 orders of magnitude were achieved for the 15N-labeled ethyltrimethylammonium ion product in deuterated water at elevated temperatures. Enhanced 15N NMR spectra were successfully acquired at 9.4 and 0.05 T. Importantly, long hyperpolarization lifetimes were observed at 9.4 T, with a 15N T1 of ∼6 min for the product molecules, and the T1 of the deuterated form exceeded 8 min. Taken together, these results show that this approach for generating hyperpolarized species with extended lifetimes in aqueous, biologically compatible solutions is promising for various biomedical applications.

Might this article interest your colleagues? Share it!

Have a question?

If you have questions about our instrumentation or how we can help you, please contact us.